- 1. Course number and name CHBE 3200 Transport Phenomena I (required)
- 2. Credits and contact hours 3 credit hours, 3 lecture hours (3-0-0-3)
- 3. Instructor's or course coordinator's name Dr. Christian Cuba-Torres

4. Textbook, title, author, and year

Fundamentals of Momentum, Heat and Mass Transfer, 6th edition, J.R. Welty, G.L. Rorrer and D.G. Foster, John Wiley & Sons Inc. (2014) (5th edition also suitable)

5. Specific course information

- a. **Catalog Description -** The basic principles of fluid mechanics and heat transfer are introduced and the analysis and design of equipment using these principles is practiced.
- b. Prerequisites or co-requisites MATH 2551 Multivariable Calculus (grade "C" or better); MATH 2552 Differential Equations (grade "C" or better); PHYS 2211 Introductory Physics I (grade "C" or better); CHBE 2130 Chemical Engineering Thermodynamic I (grade "C" or better); CHBE 2120 Numerical Methods in Chemical Engineering (grade "C" or better).
- c. Required, elective, or selected elective course (as per Table 5-1) Required

6. Specific goals for the course

a. Specific outcomes of instruction:

By the end of this course, a student should be able to:

- 1) Design/simulate the operation of process piping systems (estimate frictional losses, size pipes, size pumps, etc.) for the specific flow of liquids and gases.
- 2) Design/simulate the operation of packed beds, fluidized beds, and filters for specified fluid flow rates.
- 3) Design flow models and interpret experimental data using dimensional analysis.
- 4) Apply the macroscopic balances of mass, momentum, and energy, as well as the differential continuity equation and the equations of motion to simple systems using both Cartesian and polar coordinates.
- 5) Apply the Fourier law of heat conduction to homogeneous and heterogeneous objects of various shapes.
- 6) Estimate transient and steady state heat transfer rates from/to object such as tanks, pipes, buildings, etc.
- 7) Apply principles of radiative heat transfer.

CHBE 3200								
		Student Outcomes						
Course Outcomes	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Course Outcome 1	Χ	Χ						
Course Outcome 2	X					Χ		
Course Outcome 3	X					Χ		
Course Outcome 4	Х							
Course Outcome 5	X							
Course Outcome 6	X	Χ						
Course Outcome 7	X							

b. Connection with Student Outcomes

Student Outcomes

- (1) an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
- (2) an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
- (3) an ability to communicate effectively with a range of audiences
- (4) an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- (5) an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- (6) an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
- (7) an ability to acquire and apply new knowledge as needed, using appropriate learning strategies

7. Brief list of topics to be covered

- a. Fluid Statics
 - 1) Concept of fluid stresses, pressure
 - 2) Buoyancy
- b. Macroscopic Balance Equations of Fluid Motion
 - 1) Macroscopic mass balance
 - 2) Macroscopic momentum balance
 - 2) Macroscopic energy balance, Bernoulli's equation
- c. Shear Stress in Laminar Flow
 - 1) Shell momentum balance, velocity profile
 - 2) Non-Newtonian fluids, pipe flow
- d. Differential Balance Equations
 - 1) Differential mass balance: continuity equation
 - 2) Shell momentum balance, non-Newtonian Fluids
 - 3) Differential momentum balance, Navier-Stokes equations
 - 4) Analysis of flow profiles
- e. Dimensional Analysis
 - 1) Similarity
 - 2) Buckingham Methods, Model Analysis
- f. Theory and Applications of Viscous Flow
 - 1) Boundary layer theory, form drag
 - 2) Mechanical energy balance, frictional losses

- 3) Piping networks
- 4) Flow in packed and fluidized beds
- 5) Filtration
- 6) Pumps, developed head, lift, cavitation
- g. Steady-state Heat Transfer
 - 1) Fourier's law of heat conduction, Newton's law of cooling (convection)
 - 2) Differential energy balance, steady-state limit
 - 3) One-dimensional heat conduction, heat transfer from extended surfaces
 - 4) Multi-dimensional heat transfer
- h. Transient Heat Transfer
 - Heat transfer in the regimes of high, low and intermediate Biot number
 Boundary layer approach to heat conduction
- i. Radiation Heat Transfer
 - 1) Black body radiation, Planck's law, Stefan-Boltzmann law
 - 2) Kirchhoff's law, radiation heat exchange between real bodies